Reduction in Fluoride Emissions

The electrolytic reduction process requires the use of fluorides compounds, namely sodium fluoride and aluminium fluoride in order to improve properties of the electrolytic bath. The addition of fluoride generates energy savings in the order of 50% since it allows for the electrolytic process to be operated at a temperature of approximately 960oC. Source: Ministère de l'Environnement et de la Faune du Québec

Given the high temperature inside the electrolytic pot, some of the fluoride is released to the atmosphere. Two methods are used to reduce fluoride emissions. In older smelters, the addition of lithium in the electrolytic bath reduces the quantity of fluoride. It is treated in wet scrubbers before being exhausted to atmosphere. The water used in the scrubbers is processed and recirculated.

In modern smelters, exhaust from pots is captured by an advanced exhaust system and routed to be taken to gas treatment centers where alumina is injected into the gas stream and the fluoride is adsorbed by the alumina. This fluoride-enriched alumina is recovered and distributed to the electrolytic pots. Continuous monitors are used to measure the efficiency of gas treatment centers. These centers achieve an exhaust removal performance of over 99%.

The smelters also implement strict monitoring of both flora and fauna within a radius of several kilometers from the facilities. Monitoring of the local environment indicate that fluoride concentrations in forage are below the limit in all locations.

Minimizing the Damage of Mining

Bauxite, the ore that is processed into aluminium, is extracted from open mine sites located in tropical and subtropical areas of the globe. About four tonnes of bauxite are needed to produce one tonne of aluminium. The mining extraction of large quantities of bauxite leaves marks that need to be corrected when the mine ceases to be operated. Mining TruckIn order to minimize consequences of mining activity on the ecosystems, producers use operating methods that foster full site restoration. Once a site is mined-out, the affected area is graded and covered with a topsoil cover, often the same one that was removed at the beginning of mining operations. This allows for restoration of the land to its original or other beneficial use, depending of the requirements of local communities. The results achieved are truly remarkable, from Australia to Jamaica: new forests are born, wildlife are recovered or, alternatively, dairy farms are being operated over former mining sites. Such results are possible thanks to the involvement of local communities.

This is a true example of sustainable development.

Recycling Aluminium Cans

Aluminium CansAny comprehensive solution to the problem of solid waste disposal must include recycling, reusing materials, extracting resources from waste products and producing less material in the first place.

The recycling of aluminium beverage cans not only reduces waste, it saves energy, conserves natural resources, lessens use of municipal landfills and provides recyclers and municipalities with considerable revenue. In short, the aluminium can performs well in two of the world's major problem areas: It is good for the environment and good for the economy.

One cannot discuss protecting the environment without talking about recycling and resource recovery. In fact, it is nearly impossible to contemplate a global solution to the elimination of waste without thinking in terms of the selection and reuse of recyclable materials, efficient packaging or reduced energy consumption. In any such discussion, the recycling of aluminium, which uses 95 percent less energy than the production of primary metal from raw materials, constitutes a choice solution in addressing today's environmental concerns. More so, when one considers that, because of its nature and unlike more fragile materials, aluminium can be recycled almost indefinitely.

The recycling of aluminium uses 95 percent less energy than the production of primary metal from raw materials.

Each year, in Canada alone, 1.5 billion aluminium cans are recovered, shredded, cleaned and remelted to produce new cans. This results in the country saving enough energy to cover the energy needs of 15,000 homes for one year. The aluminium can is 100% recyclable; there are no labels or covers to be removed. Recycling one kilogram of aluminium can save about eight kilograms of bauxite, four kilograms of chemical products and fourteen kilowatt-hours of electricity. The energy needed to produce each tonne of primary aluminium has been reduced by over 30% in the last 35 years. Even though aluminium cans represent less than 1% of solid waste, they are so valuable they should all be recycled. In Canada, each person on average produces more than 600 kilograms of household solid waste a year. The aluminium industry encourages and supports curbside recycling programs as a way of reducing solid waste, and fosters the " 3 Rs " of environmentally sensitive solid waste management: Reduce, Re-use and Recycle. Aluminium should be considered a raw material and never waste material. Anything made of aluminium can be recycled indefinitely: not only cans, but aluminium foil, plates and pie molds, window frames, garden furniture, are melted down and used to make the same products again.

Today's aluminium can requires about 40% less metal than the can made 25 years ago; this means less need of both energy and raw materials per can.

Number of 12-ounce cans fabricated from one pound of 484 grams of aluminium*

  1972 21,75 cans  
  1975 23,00 cans  
  1980 24,23 cans  
  1985 26,60 cans  
  1990 30,00 cans  
  1995 30,50 cans  

An 8,000 kilogram sheet ingot makes over half-a-million cans.

However, aluminium recycling is not limited to cans. It also involves recovery and remelting of various items, construction materials, automobile parts or process scrap. It is expected that by the year 2000 recycled metal will account for 40% of the world's aluminium consumption. Already more than 80% of automobile parts made of aluminium are recycled and the amount of aluminium used in cars increases every year. Soon we will have automobiles that can be recycled entirely.

Home  |  Products  |  Services  |  Facts  |  Contact Us

The Firs Farmhouse, Blackmore Park Road, Malvern, Worcestershire WR13 6PH. Tel - 0845 688 5232 Email - info@worcester-aluminium.com
Worcester Aluminium Alloys Ltd Registered in England No 2502335. All rights reserved. Copyright 2012. | Disclaimer